A Receptor-Based Explanation for Tsetse Fly Catch Distribution between Coloured Cloth Panels and Flanking Nets

نویسندگان

  • Roger D. Santer
  • Daniel K. Masiga
چکیده

Tsetse flies transmit trypanosomes that cause nagana in cattle, and sleeping sickness in humans. Therefore, optimising visual baits to control tsetse is an important priority. Tsetse are intercepted at visual baits due to their initial attraction to the bait, and their subsequent contact with it due to landing or accidental collision. Attraction is proposed to be driven in part by a chromatic mechanism to which a UV-blue photoreceptor contributes positively, and a UV and a green photoreceptor contribute negatively. Landing responses are elicited by stimuli with low luminance, but many studies also find apparently strong landing responses when stimuli have high UV reflectivity, which would imply that UV wavelengths contribute negatively to attraction at a distance, but positively to landing responses at close range. The strength of landing responses is often judged using the number of tsetse sampled at a cloth panel expressed as a proportion of the combined catch of the cloth panel and a flanking net that samples circling flies. I modelled these data from two previously published field studies, using calculated fly photoreceptor excitations as predictors. I found that the proportion of tsetse caught on the cloth panel increased with an index representing the chromatic mechanism driving attraction, as would be expected if the same mechanism underlay both long- and close-range attraction. However, the proportion of tsetse caught on the cloth panel also increased with excitation of the UV-sensitive R7p photoreceptor, in an apparently separate but interacting behavioural mechanism. This R7p-driven effect resembles the fly open-space response which is believed to underlie their dispersal towards areas of open sky. As such, the proportion of tsetse that contact a cloth panel likely reflects a combination of deliberate landings by potentially host-seeking tsetse, and accidental collisions by those seeking to disperse, with a separate visual mechanism underlying each behaviour.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing the Colour and Fabric of Targets for the Control of the Tsetse Fly Glossina fuscipes fuscipes

BACKGROUND Most cases of human African trypanosomiasis (HAT) start with a bite from one of the subspecies of Glossina fuscipes. Tsetse use a range of olfactory and visual stimuli to locate their hosts and this response can be exploited to lure tsetse to insecticide-treated targets thereby reducing transmission. To provide a rational basis for cost-effective designs of target, we undertook studi...

متن کامل

Efficacy of Electrocuting Devices to Catch Tsetse Flies (Glossinidae) and Other Diptera

BACKGROUND The behaviour of insect vectors has an important bearing on the epidemiology of the diseases they transmit, and on the opportunities for vector control. Two sorts of electrocuting device have been particularly useful for studying the behaviour of tsetse flies (Glossina spp), the vectors of the trypanosomes that cause sleeping sickness in humans and nagana in livestock. Such devices c...

متن کامل

Improving the Cost-Effectiveness of Visual Devices for the Control of Riverine Tsetse Flies, the Major Vectors of Human African Trypanosomiasis

Control of the Riverine (Palpalis) group of tsetse flies is normally achieved with stationary artificial devices such as traps or insecticide-treated targets. The efficiency of biconical traps (the standard control device), 1×1 m black targets and small 25×25 cm targets with flanking nets was compared using electrocuting sampling methods. The work was done on Glossina tachinoides and G. palpali...

متن کامل

Developing photoreceptor-based models of visual attraction in riverine tsetse, for use in the engineering of more-attractive polyester fabrics for control devices

Riverine tsetse transmit the parasites that cause the most prevalent form of human African trypanosomiasis, Gambian HAT. In response to the imperative for cheap and efficient tsetse control, insecticide-treated 'tiny targets' have been developed through refinement of tsetse attractants based on blue fabric panels. However, modern blue polyesters used for this purpose attract many less tsetse th...

متن کامل

Standardizing Visual Control Devices for Tsetse Flies: East African Species Glossina swynnertoni

BACKGROUND Here we set out to standardize long-lasting, visually-attractive devices for Glossina swynnertoni, a vector of both human and animal trypanosomiasis in open savannah in Tanzania and Kenya, and in neighbouring conservation areas used by pastoralists. The goal was to determine the most practical device/material that would induce the strongest landing response in G. swynnertoni for use ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015